Why Is The Partial Least Square Important For Tourism Studies

  • Sari Lenggogeni
Keywords: structural equation modelling, partial least square, tourism method, multiple-regression

Abstract

Although the multiple regression method has been applied to exploratory research on most tourism studies, there is lack of understanding on studies that present a well-justified rationale in choosing a robust statistical tool for data analysis. This research note aims to review why tourism researchers are encouraged to use the Partial Least Squares Structural Equation Modelling (PLS-SEM) method to address this research problem. This article provides rationale, comparisons among techniques for multiple regression-based papers and suggestions for tourism researchers to justify why PLS-SEM is important for exploratory studies.

References

Ainuddin, R. A., Beamish, P. W., Hulland, J. S., & Rouse, M. J. (2007). Resource attributes and firm performance in international joint ventures. Journal of World Business, 42(1), 47-60. doi:http://dx.doi.org/10.1016/j.jwb.2006.11.001
Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49(2), 155-173. doi:10.1007/BF02294170
Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411-423. Retrieved from http://www.cob.unt.edu/slides/Paswan/BUSI6280/Anderson_Gerbing_1988.pdf
Bagozzi, R. P. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error: A Comment. Journal of Marketing Research, 18(3), 375-381. doi:10.2307/3150979
Bagozzi, R. P. (1984). A Prospectus for Theory Construction in Marketing. Journal of Marketing, 48(1), 11-29. doi:10.2307/1251307
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and Testing Organizational Theories: A Holistic Construal. Administrative Science Quarterly,, 27(3), 459-489. Retrieved from http://www.jstor.org/stable/2392322
Chin, W. W. (1998). Commentary: Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), vii-xvi. doi:10.2307/249674
Dann, G., Nash, D., & Pearce, P. (1988). Methodology in tourism research. Annals of Tourism Research, 15(1), 1-28. doi:http://dx.doi.org/10.1016/0160-7383(88)90068-0
Devianto, D., Ridho, M., Maryati, S., & Lenggogeni, S. (2019). Path analysis of entrepreneurial motivations in tourism based on local resources and creative economy in nagari salayo of west sumatra. Paper presented at the Journal of Physics: Conference Series.
Filimonau, V., & Mika, M. (2019). Return labour migration: an exploratory study of Polish migrant workers from the UK hospitality industry. Current Issues in Tourism, 22(3), 357-378.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
Gil-Gracia, J. R. (2007). Using Partial Least Squares (PLS) for Digital Government Research. Paper presented at the Annual International Digital Goverment Research Conferences, Montreal-Canada.
Haenlein, M., & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283-297. doi:10.1207/s15328031us0304_4
Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM): SAGE Publications, Incorporated.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modelling in international marketing. Advances in International Marketing, 20, 277-319. doi:http://dx.doi.org/10.1108/S1474-7979(2009)0000020014
Jöreskog, K. G. (1982). The LISREL approach to causal model-building in the social sciences. Systems under indirect observation, Part I, 81-100.
Joseph F Hair, J., Black, W. C., Babin, B. J., Anderson, R. E., & L.Tatham, R. (2011). Multivariate Data Analysis (7th ed.). New Jersey: Pearson Prentice Hall.
Joseph F Hair, J., Hult, G. T. M., Ringle, C. M., & Sasrstedt, M. (2014). A Primer On Partial Least Squares Structual Equation Modelling (PLS-SEM). Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE Publication, Inc.
Lenggogeni, S. (2015). Travel risk perceptions, travel intentions and influencing factors: A natural disaster context. (Doctoral Dissertation). The Universtity of Queensland, Australia.
Lenggogeni, S., Ritchie, B. W., & Slaughter, L. (2019). Understanding travel risks in a developing country: a bottom up approach. Journal of Travel & Tourism Marketing, 36(8), 941-955.
Lenggogeni, S., & Saito, H. (2018). Does a religion matter in travel risk and behavioural intention in earthquake vulnerable cities?: A case for domestic traveller in Indonesia and Japan. CAUTHE 2018: Get Smart: Paradoxes and Possibilities in Tourism, Hospitality and Events Education and Research, 836.
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE transactions on professional communication, 57(2), 123-146.
Mason, P., Augustyn, M., & Seakhoa‐King, A. (2010). Exploratory study in tourism: Designing an initial, qualitative phase of sequenced, mixed methods research. International Journal of Tourism Research, 12(5), 432-448.
Mintu-Wimsatt, A., & Graham, J. L. (2004). Testing a Negotiation Model on Canadian Anglophone and Mexican Exporters. Journal of the Academy of Marketing Science, 32(3), 345-356. doi:10.1177/0092070304266123
Monecke, A., & Leisch, F. (2012). semPLS: Structural Equation Modeling Using Partial Least Squares. Journal of Statistical Software, 48(3), 1-32. Retrieved from http://www.jstatsoft.org/v48/i03/paper
Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling.
Nunkoo, R., & Ramkissoon, H. (2011). Structural equation modelling and regression analysis in tourism research. Current Issues in Tourism, 1-26. doi:10.1080/13683500.2011.641947
Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531-554.
Tsang, E. W. K. (2002). Acquiring knowledge by foreign partners from international joint ventures in a transition economy: learning-by-doing and learning myopia. Strategic Management Journal, 23(9), 835-854. doi:10.1002/smj.251
Venaik, S., Midgley, D. F., & Devinney, T. M. (2005). Dual paths to performance: the impact of global pressures on MNC subsidiary conduct and performance. J Int Bus Stud, 36(6), 655-675. Retrieved from http://dx.doi.org/10.1057/palgrave.jibs.8400164
Yüksel, A. (2017). A critique of “Response Bias” in the tourism, travel and hospitality research. Tourism management, 59, 376-384.
Published
2019-12-30