Why Is The Partial Least Square Important For Tourism Studies
Abstract
Although the multiple regression method has been applied to exploratory research on most tourism studies, there is lack of understanding on studies that present a well-justified rationale in choosing a robust statistical tool for data analysis. This research note aims to review why tourism researchers are encouraged to use the Partial Least Squares Structural Equation Modelling (PLS-SEM) method to address this research problem. This article provides rationale, comparisons among techniques for multiple regression-based papers and suggestions for tourism researchers to justify why PLS-SEM is important for exploratory studies.
References
Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49(2), 155-173. doi:10.1007/BF02294170
Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411-423. Retrieved from http://www.cob.unt.edu/slides/Paswan/BUSI6280/Anderson_Gerbing_1988.pdf
Bagozzi, R. P. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error: A Comment. Journal of Marketing Research, 18(3), 375-381. doi:10.2307/3150979
Bagozzi, R. P. (1984). A Prospectus for Theory Construction in Marketing. Journal of Marketing, 48(1), 11-29. doi:10.2307/1251307
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and Testing Organizational Theories: A Holistic Construal. Administrative Science Quarterly,, 27(3), 459-489. Retrieved from http://www.jstor.org/stable/2392322
Chin, W. W. (1998). Commentary: Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), vii-xvi. doi:10.2307/249674
Dann, G., Nash, D., & Pearce, P. (1988). Methodology in tourism research. Annals of Tourism Research, 15(1), 1-28. doi:http://dx.doi.org/10.1016/0160-7383(88)90068-0
Devianto, D., Ridho, M., Maryati, S., & Lenggogeni, S. (2019). Path analysis of entrepreneurial motivations in tourism based on local resources and creative economy in nagari salayo of west sumatra. Paper presented at the Journal of Physics: Conference Series.
Filimonau, V., & Mika, M. (2019). Return labour migration: an exploratory study of Polish migrant workers from the UK hospitality industry. Current Issues in Tourism, 22(3), 357-378.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
Gil-Gracia, J. R. (2007). Using Partial Least Squares (PLS) for Digital Government Research. Paper presented at the Annual International Digital Goverment Research Conferences, Montreal-Canada.
Haenlein, M., & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. Understanding Statistics, 3(4), 283-297. doi:10.1207/s15328031us0304_4
Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM): SAGE Publications, Incorporated.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modelling in international marketing. Advances in International Marketing, 20, 277-319. doi:http://dx.doi.org/10.1108/S1474-7979(2009)0000020014
Jöreskog, K. G. (1982). The LISREL approach to causal model-building in the social sciences. Systems under indirect observation, Part I, 81-100.
Joseph F Hair, J., Black, W. C., Babin, B. J., Anderson, R. E., & L.Tatham, R. (2011). Multivariate Data Analysis (7th ed.). New Jersey: Pearson Prentice Hall.
Joseph F Hair, J., Hult, G. T. M., Ringle, C. M., & Sasrstedt, M. (2014). A Primer On Partial Least Squares Structual Equation Modelling (PLS-SEM). Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE Publication, Inc.
Lenggogeni, S. (2015). Travel risk perceptions, travel intentions and influencing factors: A natural disaster context. (Doctoral Dissertation). The Universtity of Queensland, Australia.
Lenggogeni, S., Ritchie, B. W., & Slaughter, L. (2019). Understanding travel risks in a developing country: a bottom up approach. Journal of Travel & Tourism Marketing, 36(8), 941-955.
Lenggogeni, S., & Saito, H. (2018). Does a religion matter in travel risk and behavioural intention in earthquake vulnerable cities?: A case for domestic traveller in Indonesia and Japan. CAUTHE 2018: Get Smart: Paradoxes and Possibilities in Tourism, Hospitality and Events Education and Research, 836.
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE transactions on professional communication, 57(2), 123-146.
Mason, P., Augustyn, M., & Seakhoa‐King, A. (2010). Exploratory study in tourism: Designing an initial, qualitative phase of sequenced, mixed methods research. International Journal of Tourism Research, 12(5), 432-448.
Mintu-Wimsatt, A., & Graham, J. L. (2004). Testing a Negotiation Model on Canadian Anglophone and Mexican Exporters. Journal of the Academy of Marketing Science, 32(3), 345-356. doi:10.1177/0092070304266123
Monecke, A., & Leisch, F. (2012). semPLS: Structural Equation Modeling Using Partial Least Squares. Journal of Statistical Software, 48(3), 1-32. Retrieved from http://www.jstatsoft.org/v48/i03/paper
Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling.
Nunkoo, R., & Ramkissoon, H. (2011). Structural equation modelling and regression analysis in tourism research. Current Issues in Tourism, 1-26. doi:10.1080/13683500.2011.641947
Sarstedt, M., Ringle, C. M., Cheah, J.-H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531-554.
Tsang, E. W. K. (2002). Acquiring knowledge by foreign partners from international joint ventures in a transition economy: learning-by-doing and learning myopia. Strategic Management Journal, 23(9), 835-854. doi:10.1002/smj.251
Venaik, S., Midgley, D. F., & Devinney, T. M. (2005). Dual paths to performance: the impact of global pressures on MNC subsidiary conduct and performance. J Int Bus Stud, 36(6), 655-675. Retrieved from http://dx.doi.org/10.1057/palgrave.jibs.8400164
Yüksel, A. (2017). A critique of “Response Bias” in the tourism, travel and hospitality research. Tourism management, 59, 376-384.